分光光度法是指應用分光光度計的分析方法,具有靈敏、準確、快速及選擇性好等特點。
通常所測樣品溶液濃度下限可達10-6~10-5mol/L,適用于測定食品中的微量組分(如肉制品中的亞硫酸鹽、糖果中的二氧化硫等)。
試驗方法
物質對光的選擇性吸收
當光束照射到物質上時,光與物質發(fā)生相互作用,產生反射、散射、吸收或透射。
若被照射的是均勻溶液,光的散射可以忽略。
溶液顏色的產生
當一束白光通過某一有色溶液時,一些波長的光被溶液吸收,另一些波長的光則透過溶液。
透射光或反射光刺激人眼使人感到顏色的存在。
人把自身能感覺到的光定義為可見光。
在可見光區(qū),不同波長的光呈現(xiàn)不同的顏色,因此溶液的顏色由透射光的波長所決定。
透射光與吸收光可組成白光,故稱這兩種光互為補色光,兩種顏色互為補色。
光吸收的本質
當一束光照射到某物質或其溶液時,組成該物質的分子、原子或離子與光子發(fā)生“碰撞”;
光子的能量就轉移到分子、原子或離子上,是這些粒子由***低能態(tài)(基態(tài))躍遷到較高能太(激發(fā)態(tài)),這個作用稱為物質對光的吸收。
被激發(fā)的粒子約在10-8s后回到基態(tài),并以熱或熒光等形式釋放出能量。
分子、原子或離子具有不連續(xù)的量子化能級,僅當照射光光子的能量hυ,與被照射物質粒子的基態(tài)和激發(fā)態(tài)能量之差相當時,才能發(fā)生吸收。
不同物質微粒由于結構不同而具有不同的量子化能級,其基態(tài)和激發(fā)態(tài)能量差也不相同。
所以物質對光的吸收具有選擇性。
吸收曲線
吸收曲線,也稱為吸收光譜,描述了物質對不同波長的光的吸收能力。
將不同波長的光透過某一固定濃度和厚度的有色溶液,測量每一波長下有色溶液對光的吸收程度(即吸光度);
然后以波長為橫坐標,以吸光度為縱坐標作圖,繪制的曲線即為吸收曲線。
不同濃度的同一物質,在吸收峰附近的吸光度隨著濃度增加而增大,但**吸收波長不變。
若在**吸收波長處測定吸光度,則靈敏度***高。
因此,吸收曲線是分光光度法中選擇測定波長的重要依據。
光吸收基本定律
即朗伯-比爾定律:
當一束平行單色光通過液層厚度為b的有色溶液時,溶質吸收了光能,光的強度就要減弱。
溶液的濃度越大,通過的液層厚度越大,入射光越強,則光被吸收的越多,光強度的減弱也越顯著。
該定律是紫外可見分光光度法等各類吸光光度法定量分析的依據,是由實驗觀察得到的,不僅適用于溶液,也適用于其他均勻非散射的吸光物質。
A=lg(I/I0)=εbc
A-吸光度;
I0-入射光強度,cd;
I-透射光強度,cd;
ε-吸光系數,L/(mol˙cm);
b-液層厚度(光程長度),cm;
c-有色溶液的濃度,mol/L。
其物理意義為:
當一束平行單色光通過單一均勻、非散射的吸光物質溶液時,溶液的吸光度與溶液濃度和液層厚度的乘積成正比。
式中ε是吸光物質在特定波長和溶劑的情況下的一個特征常數,數值上等于濃度為1mol/L的吸光物質在1cm光程中的吸光度。
ε是吸光物質吸光能力的量度,ε值越大,方法的靈敏度越高。
由實驗結果計算ε時,常以被測物質的總濃度代替吸光物質的濃度,實際上時表觀摩爾吸光系數。
在多組分體系中,如果各種吸光物質之間沒有相互作用,體系的總吸光度等于各組分吸光度之和,即吸光度具有加和性。
透光度T是透射光強度I與入射光強度I0之比,即:
T=I/I0
因此:A=lg(1/T)